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Linearized gravity

gµν = ηµν + hµν = ηµν + h(1)
µν +O(h2)

Applications

• Dynamics of spacetime within or beyond GR
e.g. stability of black hole

• Weak-field experimental tests of GR
e.g. gravitational radiation

The common tool is linearized Einstein field equation (LEE)

G(1)
µν [h(1)] = 8πTµν

Hard to solve =⇒ need separation of variables
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Metric perturbations in Kerr

Teukolsky’s method

• Newman-Penrose formalism =⇒ perturbation equations for Ψ4 or Ψ0

• One master to rule them all (scalar, vector, tensor, spinor)
• Separation of variables X
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Metric perturbations in Kerr

from curvature to metric

• Metric reconstruction by Chandrasekhar
• “The procedure is so complicated that it does not seem to have been used, at least in its

entirety, in any application.” — Saul Teukolsky
• Hertz potentials

• must be performed case by case
• restricted to radiation gauge =⇒ singularities in presence of source

Complicated!
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Go back to Schwarzschild

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2 θdφ2)

Symmetry

• Static =⇒ time translation symmetry
• Spherical =⇒ rotation symmetry
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Go back to Schwarzschild

M4 =M2 × S2

“2 + 2”-decomposition of the spacetime
• Scalar basis of SO(3) acting on S2 are just Ylm(θ, φ)

• Vector basis DaYlm, εabDbYlm

• Tensor basis D〈aDb〉Ylm, ΩabYlm, ε〈acDb〉DcYlm

• Separation of variables X

Question: Extended to Kerr?

Answer: Yes, but not for any Kerr.
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Near-horizon extremal Kerr (NHEK)
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The NHEK limit

• Extremal condition

a = M

• Near-horizon limit
• rescale the BL coordinates t, r, φ

t

M
=

2T

λ
,

r

M
= 1+λR, φ = Φ+

t

2M
.

• take the limit λ→ 0
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What’s new?

• Two additional Killing vectors

Kerr NHEK
∂φ ∂Φ = Q
∂t ∂T = H+

T ∂T −R∂R = H0

(T 2 + 1
R2 ) ∂T − 2TR∂R − 2

R ∂Φ = H−

• Extended isometry group
SL(2,R)× U(1)
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Isometry group

• {Q = ∂Φ} generates U(1)

• {H0, H+, H−} generates SL(2,R)

• The Casimir element
Ω = H0(H0 − 1)−H−H+

• Generators independent of u(= cos θ) =⇒ Isometry acts on u-slices
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From isometry group to basis decomposition

Schwarzschild
• “2+2”-decomposition
• SO(3) acting on S2

• 1 scalar, 2 vector, 3 tensor basis
• Ylm, DaYlm, etc.

NHEK
• “3+1”-decomposition
• SL(2,R)× U(1) acting on M3

• 1 scalar, 3 vector, 6 tensor basis
• ?
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The highest-weight method
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The method

• Simultaneous diagonalization of {Q,Ω,LH0}
• Label the states by m,h, k
• The highest weight (k = 0) annihilated by LH+

• All other basis obtained by applying LH− for k times
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Scalar basis

• k = 0 (Highest)
F ∝ RheimΦ

• k = 1
F ∝ −2Rh−1eimΦ(hRT + im)

• k = 2

F ∝ −2Rh−2eimΦ

(
− 2i(2h− 1)mRT + h(1− 2h)R2T 2 + h+ 2m2

)

Baoyi Chen (Caltech) Linear metric perturbations in NHEK 14



Separation of variables
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Scalar Laplacian

2ψ =
1

2M2Γ

(
Ωψ +

(u4 + 6u2 − 3)

4(1− u2)
L2
Qψ + L∂u

[
(1− u2)L∂uψ

])
• Separation of variables X
• T,R,Φ-pieces determined by symmetry, only u-dependence unknown
• u-dependence for free wave are spheroidal harmonics
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Linearized Einstein equation

G(1)hab =
↔
M(T,R)

↔
D

2

u[u]eimΦ

• Separation of variables X
• T,R,Φ-pieces determined by symmetry

•
↔
D

2

u[u] ≡ (
↔
A∂2

u +
↔
B∂u +

↔
C)~V (u)

• LEE =⇒ 10 ODEs for the polar angle (u = cos θ)!
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Conclusions

• Highest weight method =⇒ separation of variables X
• Metric perturbation instead of curvature perturbation X

• Analytical solutions to LEE with source (e.g. dCS, EDGB) X
• Could be extended to near-extremal Kerr (future work)

The End. Thank you.
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*Additional slides
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The NHEK limit

Kerr metric In Boyer-Lindquist (BL) coordinates t, r, θ, φ

ds2 = −∆

Σ
(dt− a sin2 θ dφ)2 +

Σ

∆
dr2 + Σ dθ2 +

sin2 θ

Σ

[
(r2 + a2) dφ− a dt

]2
The NHEK metric in the Poincaré coordinates T,Φ, R, u(= cos θ)

ds2 = 2M2Γ

[
−R2 dT 2 +

1

R2
dR2 +

1

1− u2
du2 + Λ2(dΦ +RdT )2

]

Γ(u) = (1 + u2)/2 and Λ(u) = 2
√

1− u2/(1 + u2)
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Vector basis

• Casimir element in the space of vector functions

Ω = LH0(LH0 − 1)− LH−LH+

• Operators =⇒ Lie derivatives along K.Vs
• Three independent vector basis for each weight
• The general vector basis

V (mhk) = LkH−

(
(CTR

h−1êT + CΦR
hêΦ + CRR

h+1êR) eimΦ

)
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Symmetric tensor basis

• Solve the same set of eqs as for vector cases
• Six independent tensor basis for each weight
• The general tensor basis

T
(mhk)
AB = LkH−

 CTTR
h+2 CTΦR

h+1 CTRR
h

∗ CΦΦR
h CΦRR

h−1

∗ ∗ CRRR
h−2

 eimΦ
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Maxwell system

• Choose the three vector basis

V1
(m,h, 0)
a = Rh+1dT

V2
(m,h, 0)
a = RhdΦ

V3
(m,h, 0)
a = Rh−1dR

• LHS of Maxwell equation for the highest weight

(∇aFab)k=0 =
1

M4

(
G0(u)naF

(m,h, 0)+G1(u)V1
(m,h, 0)
a +G2(u)V2

(m,h, 0)
a +G3(u)V3

(m,h, 0)
a

)
eimΦ

• Assume completeness, variable separate for each weight
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Linearized Einstein equation

• Choose the six tensor basis

W1
(m,h, 0)
ab = Rh+2dT ⊗ dT

W2
(m,h, 0)
ab = Rh+1dT ⊗ dΦ

W3
(m,h, 0)
ab = RhdT ⊗ dR

W4
(m,h, 0)
ab = RhdΦ⊗ dΦ

W5
(m,h, 0)
ab = Rh−1dΦ⊗ dR

W6
(m,h, 0)
ab = Rh−2dR⊗ dR
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Linearized Einstein equation

• Assume completeness, decompose the metric perturbation

hab =
∑
m,h, k

h
(mhk)
ab =

∑
m,h, k

(
nanbF

(mhk)f(u)+

3∑
i=1

n {aVi
(mhk)
b} vi(u)+

6∑
j=1

Wj
(mhk)
ab tj(u)

)
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